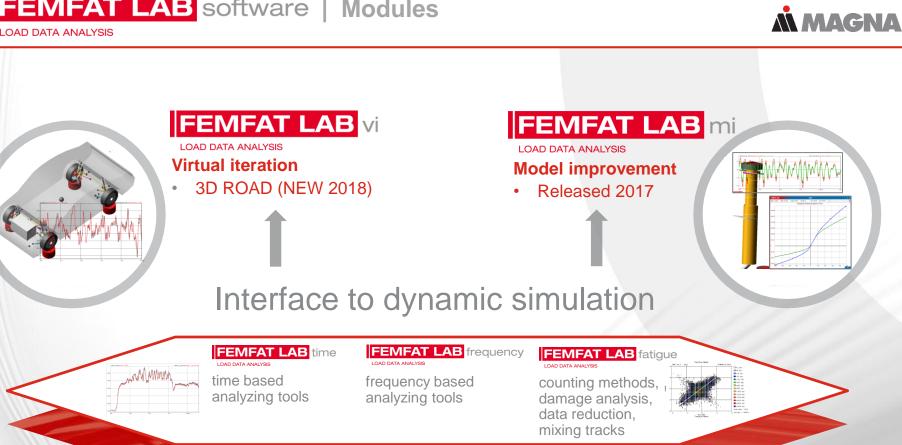


FEMFAT LAB software


LOAD DATA ANALYSIS

Powertrain

New Features in combination with MBS O. Gattringer, J. Traunbauer January 2019

FEMFAT LAB software | Modules

LOAD DATA ANALYSIS

Load data analysis software

• MBS simulation results depend mainly on excitation and model accuracy

Excitation

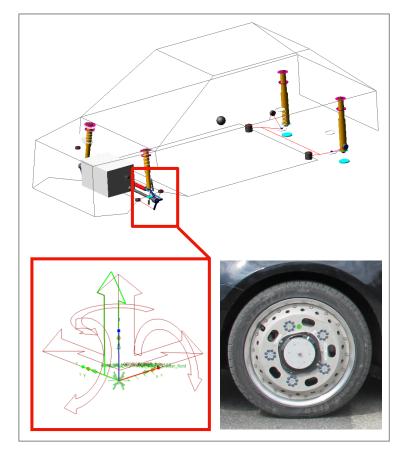
- Defined, e.g. stochastic road, standard load cases,
- Measured, e.g. digital road, wheel forces (WFT), mount forces,
- Computed based on internal measured signals

vi provides well developed process for generating an accurate excitation

- Model accuracy
 - Parameters defined by user (CAD/CAE data, supplier values, measurements, experience,)
 - Some parameters can be also measured during road load data (RLD), e.g. damper characteristics
 - Model parameters can be modified manually depending on correlation of simulated and measured channels (manual model verification and trimming by additional checking signals is an important part of VI process)

Automated model parameter improvement

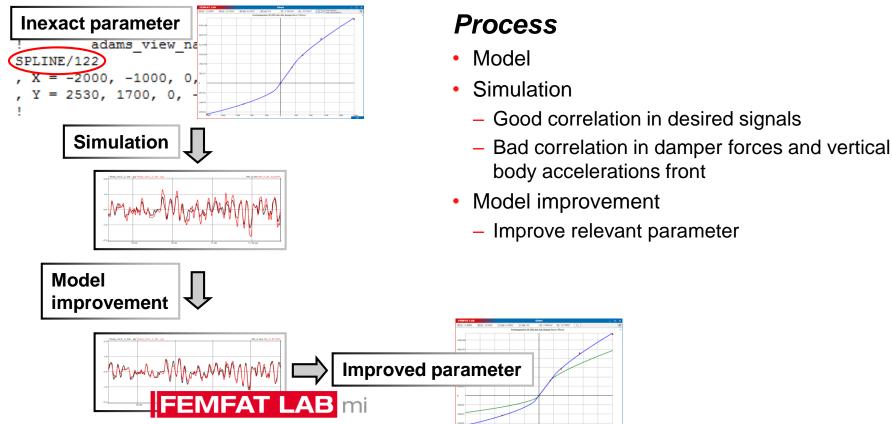
mi – nonlinear application damper


Date: 2019 / Author: O. Gattringer, J. Traunbauer

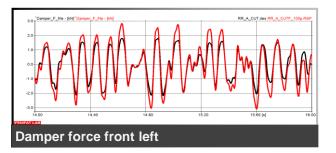
© MPT Engineering / Disclosure or duplication without consent is prohibited

4

Model



- MSC.ADAMS/Car full vehicle model
- Load computed by vi
 - 4-poster using additional WFT channels
 - Based on RLD measurements (rough road)
 - WFT (wheel force transducer) signals
 - Spring displacements
 - Damper forces
 - Tierod forces
 - Vertical accelerations at wheel centers
 - Vertical accelerations at body close to damper mounts


3.95

0.99

1.34

Results of rough road maneuver - relative damage values (target is 1)

Desired channels show well correlation

1.33

0.95

1.14

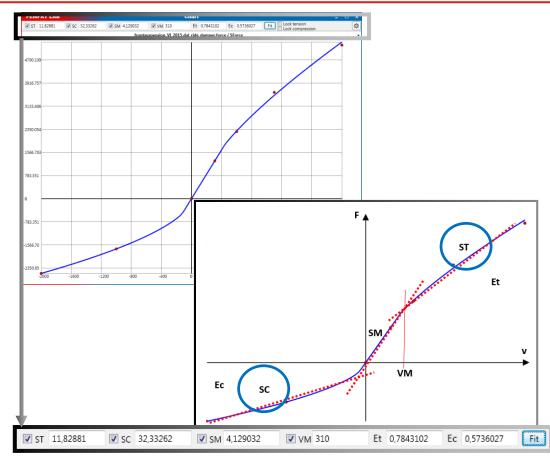
- Spring front left:
- Spring front right:
- Spring rear left:
- Spring rear right:

- ACC WC front left: 0.83
 - ACC WC front right: 0.84
- 1.10 ACC WC rear left: 1.14

- ACC body front left:

- ACC body rear left:

- ACC WC rear right: 1.07


- ACC body front right: 4.18

- Channels for model check
 - Damper force front left: 4.78
 - Damper force front right: 4.47
 - Damper force rear left: 1.02
 - Damper force rear right: 1.09 ACC body rear right:
- Model has to be improved to achieve better correlation in damper forces and body accelerations front

mi - settings

- Fit function to interpolate the points of the *.adm file
- Mathematical approximation uses
 6 coefficients
- Coefficients can be fitted or defined manually
- Each coefficient can be deactivated for fixing it in the improvement process

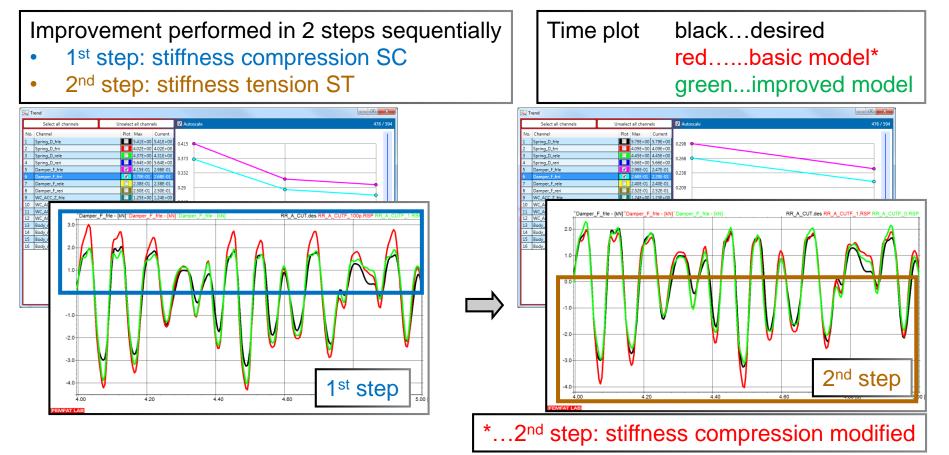
The challenge is that the process should be unique

(several inputs for one output and interactions between the inputs)

Date: 2019 / Author: O. Gattringer, J. Traunbauer

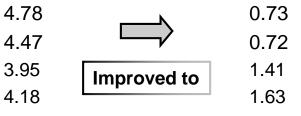
Improvement performed in 2 steps sequentially

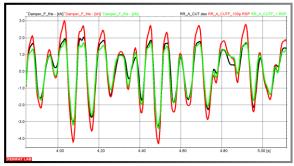
- 1st step: stiffness compression SC
- 2nd step: stiffness tension ST



Target:

- Improve front damper forces
- Sum of RMS values (simulation compared to measurement)





Improvement performed in 2 steps sequentially

- Improved damper characteristic leads to better correlation in damper forces
 - Damper force front left:
 - Damper force front right:
 - ACC body front left:
 - ACC body front right:
- 9 ADAMS simulations were required in total

Time plot	blackdesired					
	redbasic model					
	greenimproved model					

mi - conclusion

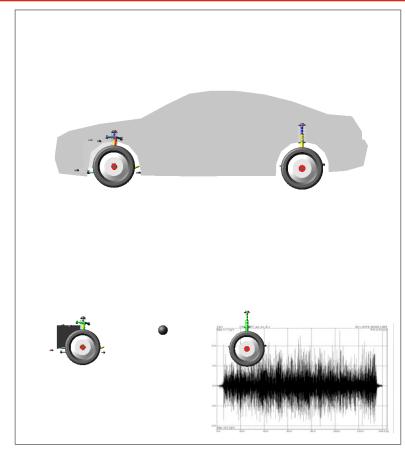
Fields of work

FEMFAT LAB mi supports improvement of the model quality by means of adjusting linear / non linear parameters of:

- Part (mass, mass moment of inertia and center of gravity)
- Spring and/or Damper
- Bushing

m

- Beam single element or several beams using group (stabilizer, leaf spring, ...)
- Clearances of bump or rebound stops
- Not well defined parameters can be identified with suitable measurement channels by means of a diagnose tool
- Nonlinear characteristic can be approximated by mathematical terms and handled conveniently by the GUI to fit and interpolate the curve
- Video tutorial is available
 - Getting started
 - Step by step tutorial
 - Including explanations

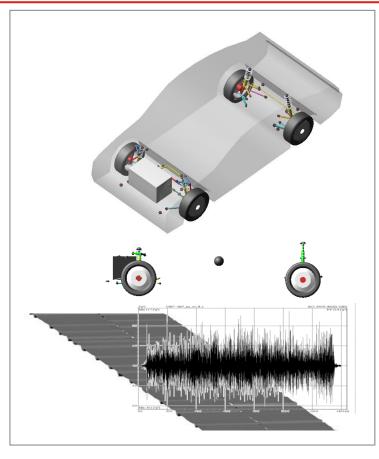


3D Road - overview

Motivation

Goal

 Use road loads for vehicle development in design phase (no physical prototype exists)


Situation - Requirement

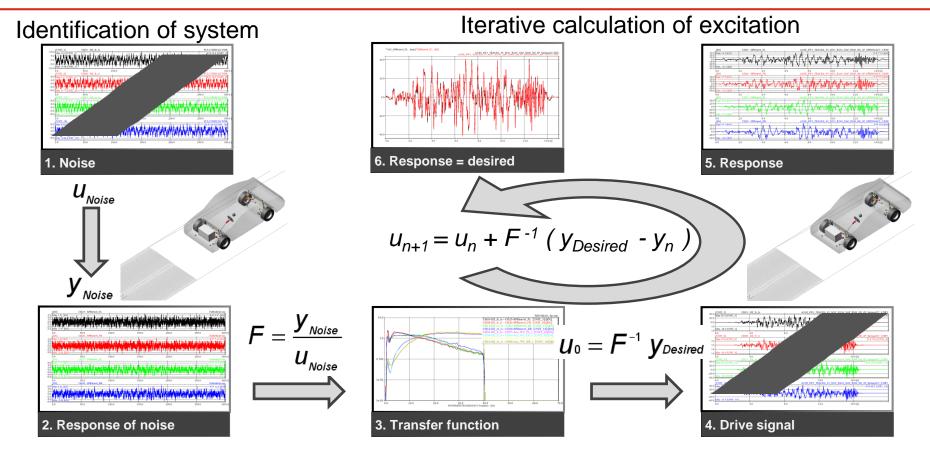
- New vehicle
 - No physical prototype no RLD available
 - CAD model exists

Necessary input data (data base)

- RLD, measured on test tracks with comparable / similar vehicle (mini car, middle class, SUV...)
- MBS model of measured and comparable vehicle

Idea

- Use of 3D road and F-Tire model for simulation of vehicle in design phase (no measurement required)
- 3D road generation (not measured/scanned)
 - Computed by VI
 - Verified by existing data
 - (Well) known simulation model
 - Measured RLD


3D road must be generated only once for a family of vehicles

3D Road - workflow

Workflow

Input data

MAGNA

road

Virtual Iteration * ieneral me: irectory: etup Input/Output Noise Simulation program Call	generator Transfer function Additional evaluation Iteration [Adams (local) [CVMSC Software/Adams x64/2015 1 2/bin/safam:2015 1 x64	<u>∆</u> f: 0.2500 Hz	IN/OUT No. of input channels: 2 No. of output channels: 1	3D Road teration 3D Road 3D Road Velocity: 5.55 m/sec (20.0 km/h) Velocity: 5.55 m/sec (20.0 km/h)	•	3D Road: cor height along Lateral slope	y-direction	
Initialising Batchfile Remote-access Server/Hostname Username Password			-	Wheelbase (mm) 1st-2nd 1st-3id 1st-4th 1st-5th Road parameters Road width (mm) 4000.0 Friction value: 0.8		surface acros		
Shell Model-Ille Driver-control-file: Database directory Load Save	Save gs		3D Road iteration ▼ 3D Road □ □ □ Lateral slope □ □ □ Close	Fist area at begin (mm): 1111.1 Longitudinal displacement Request ID				
			→ 3D Road i ✓ 3D Ro- ✓ Lateral	ad Islope		Lateral slope		
		Į			ang		3D Road	DZ

3D Road – verification of method

Roads

- Different road tracks
- Single event: threshold (validation)

Virtual measurement data

- Full vehicle model including F-Tire
- Different digital roads
- Simulation:

requests of virtual measurement channels which are used for 3D Road iteration afterwards (no real measurement data is used)

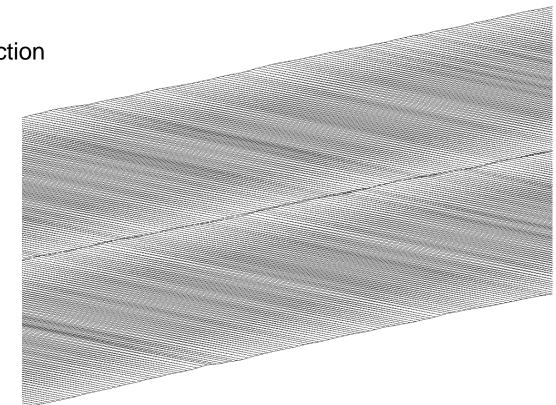
No influence of F-Tire, model and measurement for check of method

Virtual measurement channels – 70 channels Used as desired signals for 3D Road iteration

- Wheel forces
- Spring displacements
- Damper forces
- Wheel center accelerations X, Y, Z
- Body accelerations Z
- Ball Joint forces front suspension
- Ball Joint forces rear suspension
- Tie rod forces front suspension
- Link forces rear suspension

- 24 channels
 - 4 channels
- 4 channels
- 12 channels
 - 4 channels
- 10 channels
 - 4 channels
 - 2 channels
- 6 channels

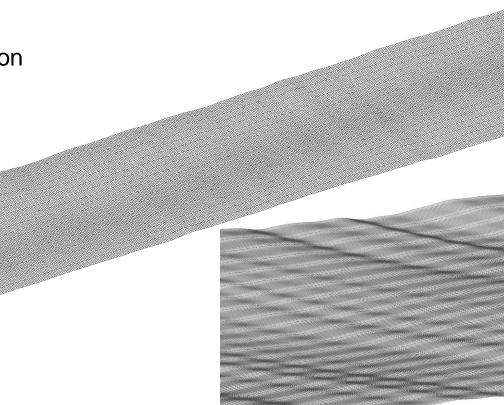
Road profile #1



Road_C_even_41kmh.des

- Road C even, constant in y-direction
- Velocity: 41 km/h
- 20 seconds
- "Soft" road

Simulation to get desired signals for iteration

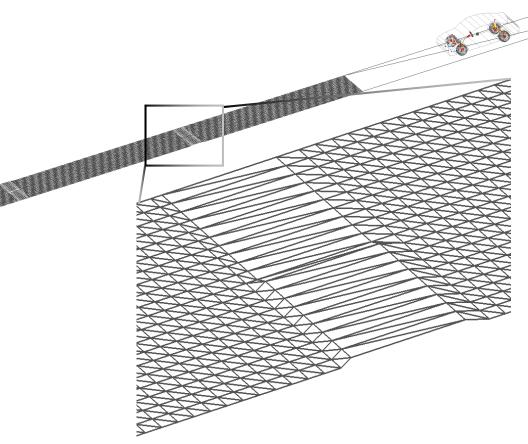


Road_D_uneven_41kmh.des

- Road D uneven, variable in y-direction
- Velocity: 41 km/h
- 20 seconds
- "Hard" road

Simulation to get desired signals for iteration

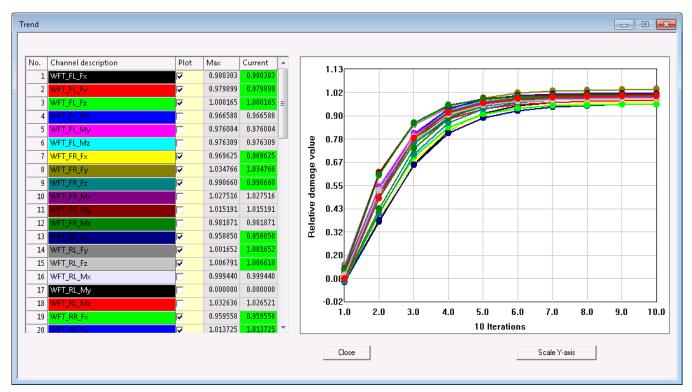
Road profile #3



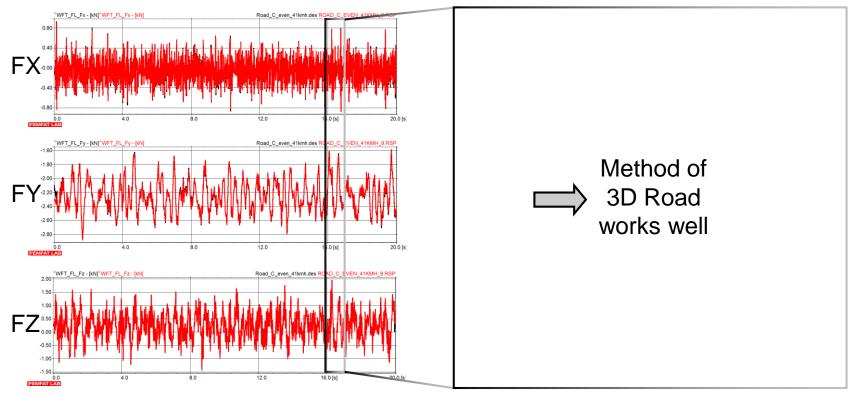
Threshold_normal_50kmh.des

- Threshold
 - 1st left side only
 - 2nd right side only
- Height: 40mm
- Length: 1500mm
- 4 seconds

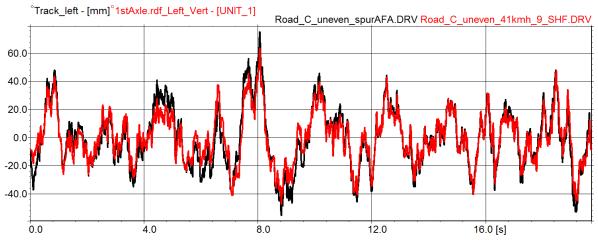
Simulation to get desired signals for iteration

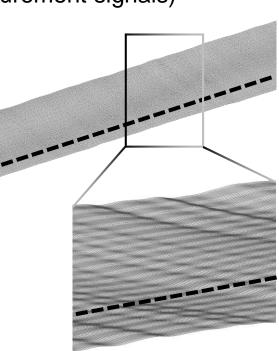


3D Road - validation of process


Road C even 41km/h – trend in relative damage values

- Convergence
- Very accurate




Road C even 41km/h - time signals, WFT front left

Road uneven 41km/h – transferred in time domain

- Original road left side in black (simulation of virtual measurement signals)
 - Cut along left track
 - Filtered by 0.25Hz 40Hz (same as transfer function)
- Iterated road left side in red

MAGNA

FEMFAT LAB

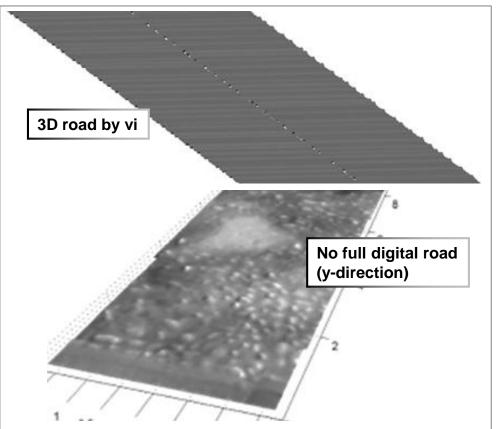
Date: 2019 / Author: O. Gattringer, J. Traunbauer

Threshold normal 50km/h – road profile, left side

Driving direction

3D Road – advantages / restrictions

Computed roads



Advantages

- No 3D road scan required
- Special maneuvers possible (outside of proving ground,...)
- Customer usage
- Scan not always possible (water, mud,...)

Computed roads

Restrictions

- Results depends strongly on the used tire model
- 3D road for tire patch width (y-direction) only, result is not a full scan of road in Y-direction

Sing V.: Use of virtual iteration in commercial vehicle development FEMFAT User Meeting 2007

3D Road - conclusion

- Full vehicle MBS model including tire model is required
- Use of vi required (standard process)
 - Some additional settings
 - Results show good correlation with 3D road simulation (influence of model, tire and measurement inaccuracies are eliminated)

3D Road was released in 2018

- Video tutorial is available
 - Getting started
 - Step by step tutorial
 - Including rough explanations

DRIVING EXCELLENCE. INSPIRING INNOVATION.