

FEMFAT LAB Virtual Iteration and Model Improvement

MAGNA

Otmar Gattringer

Content

- Overview
- Motivation
- Full vehicle example
- Conclusion

LOAD DATA ANALYSIS

Overview

Date: May 20 / Author: Gattringer

Modules

MAGNA

© MPT Engineering / Disclosure or duplication without consent is prohibited

Date: May 20 / Author: Gattringer

© MPT Engineering / Disclosure or duplication without consent is prohibited

Motivation illustrated by full vehicle simulation

Body acceleration Z front left

black...measurement / red...simulation

Motivation illustrated by full vehicle simulation

black...measurement / red...simulation

Motivation illustrated by full vehicle simulation

- Excitation fixed
- Trim model parameters to achieve better correlation in channels used for model check (e.g. body accelerations)

black...measurement / red...simulation

• MBS simulation results depend mainly on excitation and model accuracy

Excitation

- Defined, e.g. stochastic road, standard load cases,
- Measured, e.g. digital road, wheel forces (WFT), mount forces,
- Iterated, e.g. by virtual iteration (displacements or forces)

- Model accuracy
 - Parameters defined by user (CAD/CAE data, supplier values, measurements, experience,)
 - Some parameters can be also measured during road load data (RLD), e.g. damper characteristics
 - Model parameters can be modified manually depending on correlation of simulated and measured channels (manual model verification and trimming by additional checking signals is an important part of VI process)

Modules

MAGNA

vi - introduction

- General approach
 - Generate external load based on internal, measured response
- Same approach as the iteration process in the laboratory (test bench)
- Excellent convergence between measurement and simulation
- Method is automated for
 - ADAMS
 - SIMPACK
 - MOTIONSOLVE
 - RECURDYN
 - VI GRADE

vi - introduction

Load cell

Date: May 20 / Author: Gattringer

- Strain gauges
- Displacements (absolute)

© MPT Engineering / Disclosure or duplication without consent is prohibited

Strains

Forces (internal)

vi - introduction

MAGNA

Calculation of the transfer function (MBS): $F(s) = y_0(s) / u_0(s)$ noise signal and its response

Calculation of first drive:

 $u_1(s) = F^{-1}(s) y_{\text{Desired}}(s)$

Calculation of further iterations:

 $u_{n+1}(s)=u_n(s)+F^{-1}(s) (y_{Desired}(s)-y_n(s))$

vi - measurement signals

Typical responses

- Accelerations
 - 1-axial
 - 3-axial
- Displacements
 - Draw wire displacement sensor
- Frame torsion
- Strains (directly/calibrated to forces)
 - Axle
 - Ball joint
 - Link
 - Rod
 - Spring
 - Stabilizer
- Load cells
 - Mount
- Wheel force transducers

vi - examples

Date: May 20 / Author: Gattringer

Modules

MAGNA

© MPT Engineering / Disclosure or duplication without consent is prohibited

mi - introduction

- **MAGN**
- Automated model improvement: Manual trimming of an experienced engineer should be partially automated respectively supported (no absolute optimum because of feasible run-times)
- Model parameters improved based on RLD (channels for model check)
 - Mass, mass moment of inertia, center of gravity
 - Stiffness and damping, 1-axial, 3-axial, 6-axial
- Parameters must be defined and will be updated
- Excitation is well known (measured or computed by VI) and fixed during investigations
- A diagnose tool assists to identify the relevant parameters

mi - introduction

Supported model parameters which can be automatically improved

- Mass, center of gravity
- Mass moment of inertia
 - I_X or I_Y or I_Z
 - Common factor on $I_X,\,I_Y$ and I_Z
- SFORCE, VFORCE, GFORCE, FIELD (bushing)
 - Stiffness by value or spline, translational or rotational
 - Damping by value or spline, translational or rotational
 - Common factor for all directions or directions separately
- BEAM
 - Planar moment of inertia
 - E and G modulus
- Definition of group (e.g. leaf spring)
- Clearance of bumpstop and reboundstop

Full vehicle example

Date: May 20 / Author: Gattringer

© MPT Engineering / Disclosure or duplication without consent is prohibited

Full vehicle example

Model

- MSC.ADAMS/Car Model (rigid body)
- Input (load) computed by vi
 - 4-poster
 - Vertical displacement at wheel centers
 - Measured spring displacements and vertical wheel center accelerations should be reproduced
 - Measured signals at wheel center will be applied additionally
 - FX, FY, TX, TZ

Full vehicle example

Measurement signals

- Spring displacements
- Damper forces
- Vertical wheel center accelerations
- Vertical body accelerations
- WFT signals

vi – virtual iteration

vi - full vehicle example

MAGNA

Iteration process

Results of 10th iterations, rough road maneuver - relative damage values (target is 1)

black...measurement / red...simulation Spring displacement front left

- Desired channels
 - Spring front left: 1.14 - ACC WC front left:

1.07

1.02

- Spring front right:
- Spring rear left:
- Spring rear right:

- 0.68
- ACC WC front right: 0.76
- ACC WC rear left: 1.06 1 12
 - ACC WC rear right: 1.09
- Channels for model check body accelerations are inaccurate
 - Damper force front left: 0.82
 - Damper force front right: 0.81
 - Damper force rear left: 1.10
- ACC body front left: 8.34
- ACC body front right: 8.74
- ACC body rear left: 4.18
- ACC body rear right: 5.97 - Damper force rear right: 1.20

Model should be improved to achieve better correlation in body accelerations

mi - model improvement

mi - full vehicle example

FEMFAT LAB			Model Impr	ovement									
Name: D:\work1\ogattrin\\	VI\2016 <u>A</u>	MI\Softwaretests\26	D1\Body_IP_1D_a.sav										
MBS-File: D:\work1\ogattri	in\VI\201	.6 <u>A</u> MI\Softwaretests\	2601\Fullvehicle_VI_add_WF	FT_A.adm									
Settings		Channel selection											
Input / Output Parameter Selection Edit	No.	Name			Variation %	VCACC_Z_rel	WCACC_Z_re	BodyACC_Z_f	Body <u>A</u> CC_Z_f	f Body <u>A</u> CC_Z_r	Body <u>A</u> CC_Z_r		
	0	body VI ges body /	Macc		10	Jnannei: 11	Channel: 12	Channel: 13	1 224	Channel: 15	Channel: 10		
Diagnose	1	body VI.ges body /	IP		50	985	0.985	0.288	0.313	0.351	0.317		
Improvement	2	body_VI.ges_body /	QG - Z		50	005	1.001	1.001	0.999	0.999	1.001		
	153	frontsuspension_VI	2015.bgl_top_mount.field /	Field - Z	50	006	1.007	1.001	1	0.999	1		
	158	rearsuspension_VI_2	2015.bgl_upr_strut_to_body.	field / Field - Z	50	987	1.002	1.002	1.001	1.008	1.008		
	166	66 frontsuspension_VI_2015.nsl_ride_spring.force / SForce			10	98	0.99	0.982	0.98	1.007	1.018		
	1/4	rearsuspension_VI_2	2015.nsl_ride_spring.force /	SForce	10	986	0.955	0.955	0.973	0.941	0.932		
		1.156			1.224		1.287		1	1.097			
			0.288	0.3	313		0.35	1		0.317			
			1.001	0.9	999	0.99		9 1		1.001			
			1.001 1			0.		0.999		1			
			1.002	1.0	01		1.00	8	1	1.008			
Load Save		Save as	0.982	0.9	8		1.00	7	1	1.018			
			0.955	0.9	973		0.94	1	(0.932			

Diagnose

- Last drive of virtual iteration is used
- Different reasonable parameters are selected
- Each parameter is varied and the results compared to unvaried model
- Table shows influence of variation of each parameter to the different channels
- High variation from one indicates that parameter has useful potential

Mass moment of inertia has most effect on body accelerations

mi - full vehicle example

•	
Λ	MAGNA

FEMFAT LAB	Model Improvement		
Name: D:\work1\ogattrin\V	2016 <u>A</u> MI\Softwaretests\2601\Body_IP_1D_a.sav		
MBS-File: D:\work1\ogattrin	$VI \ 2016 \underline{A} MI \ Software tests \ 2601 \ Full vehicle \ VI \ add \ WFT \ A. adm$		
Settings Input / Output Parameter	Processing: Automatic Display: Trend Tar Manual Timeplot	get:	Turbo: ● Off ◎ On
 Selection Edit Diagnose Improvement 	No. Name 1 body_VI.ges_body / IP	Variation %	
improvement			
	Relation of Channels #9 + #10 + #11 + #12		Simulate
Load Save	Save as		Close

Improvement

- Mass moment of inertia should be optimized to get a better correlation in body accelerations
- Target:

Sum of relative damage values of body accelerations should be optimized

 Stop criteria: Change between two consecutive steps is smaller than 5%

mi - full vehicle example

MAGNA

Results

• Improved mass moment of inertia leads to better correlation in body acceleration

- ACC body front left: 8.34
- ACC body front right: 8.74
- ACC body rear left: 4.18
- ACC body rear right: 5.97

- ACC body front left: 1.12
- ACC body front right: 1.34
- ACC body rear left: 0.73
- ACC body rear right: 0.88
- 9 ADAMS simulations were required in total

Conclusion

Conclusion

- FEMFAT Lab combines simulation and measurement
- Virtual iteration
 - Powerful method for load data generation
 - Excellent convergence between measurement and simulation
 - Efficient method to generate absolute displacements (e.g. tire patch, frame movement for add on parts like cab, tank, engine, exhaust systems)
 - Efficient parameter studies and transfer to similar vehicles (invariant load)
- Model improvement
 - mi supports to improve the model quality
 - Worse defined parameter can be identified with suitable measurement channels
- Full vehicle example shows capability of the methods